National Journal on Advances in Computing and Management, Vol. 2, No.1, April 2011

RECITATION OF LOAD BALANCING ALGORITHMS IN GRID COMPUTING
ENVIRONMENT USING POLICIES AND STRATEGIES - AN APPROACH

Ranichandra S.", Rajagopal TK.P.2

1Degartment of Computer Science, K.S.Rangasamy College of Arts and Science, Tiruchengode.
Dept of Computer Science and Engineering, Kathir College of Engineering, Coimbatore.
Email: 'rani.src@gmail.com

ABSTRACT

Grid computing is a term referring to the combination of computer resources from multiple administrative domains
to reach common goal. What distinguishes grid computing from conventional high performance computing systems
such as cluster computing is that grids tend to be more loosely coupled, heterogeneous, and geographically
dispersed. Grid computing is the next generation IT infrastructure that promises to transform the way organizations
and individuals compute, communicate and collaborate. The goal of Grid computing is to create the illusion of a
simple but large and powerful self-managing virtual computer out of a large collection of connected heterogeneous
systems sharing various combinations of resources. Grid Resource Management is defined as the process of
identifying requirements, matching resources to applications, allocating those resources, and scheduling and
monitoring Grid resources over time in order to run Grid applications as efficiently as possible. Focus of this paper
is on analyzing Load balancing requirements in a Grid environment and proposing a centralized and sender initiated
load balancing algorithm. A load balancing algorithm has been implemented and tested in a simulated Grid

19

environment.

I. INTRODUCTION

The rapid development in computing resources
has enhanced the performance of computers and
reduced their costs. This availability of low cost
powerful computers coupled with the popularity of the
Internet and high-speed networks has led the
computing environment to be mapped from distributed
to Grid environments [1]. In fact, recent researches on
computing architectures are allowed the emergence of
a new computing paradigm known as Grid computing.
Grid is a type of distributed system which supports the
sharing and coordinated use of geographically
distributed and multiowner resources, independently
from their physical type and location, in dynamic virtual
organizations that share the same goal of solving
large-scale applications.

In Grid computing, individual users can access
computers and data, transparently, without having to
consider location, operating system, account
administration, and other details. In Grid computing, the
details are abstracted, and the resources are
virtualized. Grid Computing has emerged as a new and
important field and can be visualized as an enhanced
form of Distributed Computing [2]. Sharing in a Grid is
not just a simple sharing of files but of hardware,

software, data, and other resources [2]. Thus a
complex yet secure sharing is at the heart of the Grid.

Il. WHY GRID TECHNOLOGIES?

Computers have been proven to be very efficient
to solve complex scientific problems. They are used to
model and simulate problems of a wide range of
domains, for instance medicine, engineering, security
control and many more. Although their computational
capacity has shown greater capabilities than the human
brain to solve such problems, computers are still used
less than they could be. One of the most important
reasons to this lack of use of computational power is
that, despite the relatively powerful computing
environment one can have, it is not adapted to such
complicated computational purposes. The following are
given the reasons for why we need grid computing.

ll. LOAD BALANCING IN GRID ENVIRONMENT

A key characteristic of Grids is that resources
(e.9., CPU cycles and network capacities) are shared
among numerous applications, and therefore, the
amount of resources available to any given application
highly fluctuates over time. In this scenario load
balancing plays key role. Load balancing is a technique
to enhance resources, utilizing parallelism, exploiting
throughput improvisation, and to cut response time

20 National Journal on Advances in Computing and Management, Vol. 2, No.1, April 2011

through an appropriate distribution of the application.
To minimize the decision time is one of the objectives
for load balancing which has yet not been achieved.
As illustrated in Figure1 load balancing feature can
prove invaluable for handling occasional peak loads of
activity in parts of a larger organization.

Fig. 1. Job Migration

A. Load Balancing Algorithms

Algorithms can be classified into two categories:
static or dynamic.

(i) Static Load Balancing Algorithm

Resource
information

Application » Schedular

A

Pre-knowledge
Base

Fig. 2. Static Load Balancing

Static load balancing algorithms allocate the tasks
of a parallel program to workstations based on either
the load at the time nodes are allocated to some task,
or based on an average load of our workstation cluster.
The decisions related to load balance are made at
compile time when resource requirements are
estimated.

(i) Dynamic Load Balancing Algorithm

Dynamic load balancing algorithms make
changes to the distribution of work among workstations

at run-time; they use current or recent load information
when making distribution decisions. Multicomputers with
dynamic load balancing allocate/reallocate resources at
runtime based on no a priori task information, which
may determine when and whose tasks can be
migrated. As a result, dynamic load balancing
algorithms can provide a significant improvement in
Performance over static algorithms.

Dynamic Grid Information

v

Resource

information Application

Schedular

A

Pre-knowledge
Base

Fig. 3. Dynamic load Balancing

IV. LOAD BALANCING STRATEGIES

There are three major parameters which usually
define the strategy a specific load balancing algorithm
will employ. These three parameters answer three
important questions:

e who makes the load balancing decision

e what information is used to make the load
balancing decision, and

e where the load balancing decision is made.

A. Sender-Initiated vs. Receiver-Initiated Strategies

The question of who makes the load balancing
decision is answered based on whether a
sender-initiated or receiver-initiated policy is employed.
In sender-initiated policies, congested nodes attempt to
move work to lightly-loaded nodes. In receiver-initiated
policies, lightly-loaded nodes look for heavily-loaded
nodes from which work may be received. The
sender-initiated policy performing better than the
receiver-initiated policy at low to moderate system
loads. Reasons are that at these loads, the probability
of finding a lightly-loaded node is higher than that of
finding a heavily-loaded node. Similarly, at high system
loads, the receiver initiated policy performs better since
it is much easier to find a heavily-loaded node.

Ranichandra et al: Recitation of Load Balancing Algorithms ...

B. Global vs. Local Strategies

Global or local policies answer the question of
what information will be used to make a load balancing
decision in global policies, the load balancer uses the
performance profiles of all available workstations. In
local policies workstations are partitioned into different
groups. The benefit in a local scheme is that
performance profile information is only exchanged
within the group. The choice of a global or local policy
depends on the behavior an application will exhibit. For
global schemes, balanced load convergence is faster
compared to a local scheme since all workstations are
considered at the same time.

C. Centralized vs. De-centralized Strategies

A load balancer is categorized as either
centralized or distributed, both of which define where
load balancing decisions are made [44-46]. In a
centralized scheme, the load balancer is located on one
master workstation node and all decisions are made
there. Basic features of centralized approach are:

e a master node holds the collection of tasks
to be performed

e tasks are sent to the execution node

e when a execution process completes one
task, it requests another task from the master
node

V. LOAD BALANCING POLICIES

Load balancing algorithms can be defined by their
implementation of the following policies:

e Information policy: specifies what workload
information to be collected, when it is to be
collected and from where.

e Triggering policy: determines the appropriate
period to start a load balancing operation.

e Resource type policy: classifies a resource
as server or receiver of tasks according to
its availability status.

e location policy: uses the results of the
resource type policy to find a suitable partner
for a server or receiver.

e Selection policy: defines the tasks that
should be migrated from overloaded
resources (source) to most idle resources
(receiver).

21

The main objective of load balancing methods is
to speed up the execution of applications on resources
whose workload varies at run time in unpredictable
way. Hence, it is significant to define metrics to
measure the resource workload. The success of a load
balancing algorithm depends from stability of the
number of messages (small overhead), support
environment, low cost update of the workload, and
short mean response time which is a significant
measurement for a user. It is also essential to measure
the communication cost induced by a load balancing
operation.

VI. PROBLEM FORMULATION

In grid environments, the shared resources are
dynamic in nature, which in turn affects application
performance. Workload and resource management are
two essential functions provided at the service level of
the Grid software infrastructure. To improve the global
throughput of these environments, effective and efficient
load balancing algorithms are fundamentally important.
The focus of our study is to consider factors which can
be used as characteristics for decision making to
initiate Load Balancing. Load Balancing is one of the
most important factors which can affect the
performance of the grid application. This work analyzes
the existing Load Balancing modules and tries to find
out performance bottlenecks in it. All Load Balancing
algorithms implement five policies [3].

The efficient implementation of these policies
decides overall performance of Load Balancing
algorithm. The main objective of this paper is to
propose an efficient Load Balancing Algorithm for Grid
environment. Main difference between existing Load
Balancing algorithm and proposed Load Balancing is in
implementation of three policies: Information Policy,
Triggering Policy and Selection Policy. For
implementation of Information Policy all existing Load
Balancing algorithm use periodic approach, which is
time consuming.

The proposed approach uses activity based
approach for implementing Information policy. For
Triggering Load Balancing proposed algorithm uses two
parameters which decide Load Index. On the basis of
Load Index Load Balancer decide to activate Load
Balancing process. For implementation of Selection
Policy Proposed algorithm uses Job length as a
parameter, which can be used more reliably to make

22 National Journal on Advances in Computing and Management, Vol. 2, No.1, April 2011

decision about selection of job for migration from
heavily loaded node to lightly loaded node. Following
table discusses the main differences between the
proposed algorithm and Condor Load Balancing

algorithm.

Table 1. Comparison between Condor LB
Module and Proposed LB Module

Information | Triggering | Selection
Policy Policy Policy
Condor Load Load Task is
Load Balancing |Balance is |selected
Balancer information |triggered for
(exisitng) is based on | migration
collected Quene using Job
using Length Length as
periodic criteria
approach
Proposed |Load Load Task is
Load Balancing |Balance is |selected
Balancer information |triggered for
is based on |migration
collected Quene based
using Length upon CPU
Activity and consumption
based current of tasks
approach |CPU Load

VIl. PROPOSED LOAD BALANCING ALGORITHM

Load balancing is defined as the allocation of the
work of a single application to processors at run-time
so that the execution time of the application is
minimized. This chapter is going to discuss the design
of proposed Load Balancing algorithm.

A. Background

While many different load balancing algorithms
have been proposed, there are four basic steps that
nearly all algorithms have in common:

1. Monitoring workstation performance (load
monitoring)

2. Exchanging this information between workstations
(synchronization)

3. Calculating new distributions and making the
work movement decision (rebalancing criteria)

4. Actual data movement (job migration)

Efficient Load Balancing algorithm makes Grid
Middleware efficient and which will ultimately leads to
fast execution of application in Grid environment. In this
work, an attempt has been made to formulate a
decentralized, sender-initiated load balancing algorithm
for Grid environments which is based on different
parameters. One of the important characteristics of this
algorithm is to estimate system parameters such as
queue length and CPU utilization of each participating
nodes and to perform job migration if required.

B. Design of Load Balancing Algorithm

Load balancing should take place when the load
situation has changed. There are some particular
activities which change the load configuration in Grid
environment. The activities can be categorized as
following:

e Arrival of any new job and queuing of that
job to any particular node.

e Completion of execution of any job.
e Arrival of any new resource
e Withdrawal of any existing resource.

Whenever any of these four activities happens
activity is communicated to master node hen load
information is collected and load balancing condition is
checked. If load balancing condition is fulfilled then
actual load balancing activity is performed. Following is
the proposed algorithm for Load Balancing:

Loop

wait for load change

/I depends on happening of any of four defined
activities

if (activity_happens ())

If (LoadBalancing_start ())

while HeavilyLoaded _list is not empty

Determine tasks which can be migratable using
criteria of CPU consumed by each job which has
least CPU consumption selected for being migrated.

Selected job = j;

If LightlyLoaded_list is empty
PendingJob_list = PendingJob_list + j;
Else

Migrate (LightlyLoaded_list [first],
HeavilyLoaded_list[n], j);

Ranichandra et al: Recitation of Load Balancing Algorithms ...

/I update the database
End while
End Loop

Following are some functions used in the above
algorithm:

Activity_happens (): this function return Boolean
value. If any of above defined activity occurs it returns
true otherwise it returns false.

LoadBalancing_start (): this function also return
Boolean value. If on the basis of given parameters
(CPU utilization and queue length) load balancing will
be required it will return true else it will return false.
This function also updates two lists:

HeavilyLoaded_list and LightlyLoaded_list:
Threshold heavy load and threshold light load is
defined initially which depends on the traffic of
application on the Grid.

Function: LoadBalancing_start
Return Type: Boolean
Start:

If (Standard Deviation of Load of nodes <
SD_Threshold)

If (Load of any node is greater then average Load
value of nodes)

HeavilyLoaded_list= HeavilyLoaded list + | (new
selected node);

End if

Else (Load of any node is greater then threshold
heavy load value)

HeavilyLoaded_list= HeavilyLoaded list + | (new
selected node);

Else if (Load of any node is less then threshold
light load value)

End

Here actual load distribution is performed at a
centralized controller or manager node. The central
controller polls each workstation and collects state
information consisting of a node’s current load as well
as the number of jobs in the node’s queue. The polling
is done on basis of occurrence of some defined activity.
It is not done periodically. Periodic checking approach
is used in Condor. In case of periodic approach Load
Balancer collects load sample periodically which is not
required and infect creates an overhead also.

23

In the proposed algorithm information is collected
only if there is a change in configuration of rid. This
information is used to perform load balancing. Above
is the flow diagram of algorithm. First of all it initializes
different parameters. Whenever any of four activities
which are required to start information policy of load
balancing occurs, it starts collecting load balancing
information. Once information has been gathered then
it is decided that load balancing is required or not. For
this purpose application uses CPU utilization and queue
length parameters.

With help of these parameters we decide which
resource is heavily loaded and which resource is lightly
loaded. After selection of resource the application

Wait for trigger by middleware that
some activity happen

Retrieve Load Balancing information

LoadBalanci
ng_start()

Is
HeavilyLoaded
_listis
smpty

Determine job which should be
migrated suppose its '

LightlyLoaded PendingJob_list=

PendingJob_list+7

Migrate job from Heavily Loaded
node to Lightly Loaded node

Update Database

Fig. 4. Flow Chart of Algorithm

24 National Journal on Advances in Computing and Management, Vol. 2, No.1, April 2011

selects job out of n-jobs running on that resource. This
selection is based upon on CPU consumption of
different jobs. Least CPU consumed job will be selected
for migration. When job is selected, application checks
for available lightly loaded resource. If lightly loaded
resource is available then migrate selected job from
heavily loaded resource to lightly loaded resource. If
no lightly loaded resource is available then add
selected job to pending job list. This job will be
executed later when some lightly loaded resource will
be available. Finally all the value will be updated in
database.

VIll. IMPLEMENTATION DETAILS

A Load Balancing Module has been developed
which executes in simulated grid environment. This
application has been developed using J2EE and
MySQL database server.

Node 1 Node 2 [ereeereess Node n

Ny L

Resource
Database

v

Resource
Discovery

Resource selection
and allocation done
by GridSim

Perform Load Balancing
if it is required

Load Balancing
Module

Fig. 5. Overall System Architecture

Above is the overall architecture of the application
developed. Information about all resources is stored in
resource database. Resources are generated by
GridSim. Resource discovery process use resource
database to discover all possible match to the resource
query. Next process is resource selection and
allocation. This process is also done by GridSim. Once
resource allocation is done then Load Balancing
process come in existence. Execution of Load
Balancing depends on condition specified.

IX. EXPERIMENTAL RESULTS

T Untitled Dacument - Microsoft Internet Explorer

= JOHLS 3
-] B oo

& 431 v 1) Mal) Showbel 31

Operating System Arch CPUlead Quene Length
Micrusoft Winduw 98 Pentium 2367 El

List of Lightly Loaded Resources
Operating System Arch
Microsift Wisdew NT X6 1187
Microssft Window XP Il 1959 1
Solaris Sun Ulora 608 1

CPUlal Queme Length

Linux Iutel 1856 1
Linux Sun Ultra 1758

Selaris Sun Ultra 1994 0

Perfarm Load Balancing Clich here

€] Dere %4 Local reranet

Fig. 6. Image of Load Balancing (1)

Above is the image of Load Balancing (1). This
window appears after Load Balancing has been
performed. In normal scenario if sufficient lightly loaded
resources are available then after load balancing no
heavily loaded resource will be available. Job from all
heavily loaded resource will be migrated to lightly
loaded resource. This page also gives information
about which Job ID is migrated from which resource
to which resource.

e - <
Fle Edt Vew Favorkes Took Hebp *
Qe -] @ s s @ @ - L3 QMO R A
Address [] hp: ocahost: 8080 esourcefoadbalandng. 50 - @
) Explore Redé + (& Search Web + v GO R4 - 2 Mal @ showsd i}

Status Of Resowrces Generated By GridSim

List of Highly Loaded Resources

[~ ——

Queve

Operating Sysiem Arch CUlad 0
fiprdde | Job migration can mt be done because no lightly Leaded node is vailable
List of Lightly Loaded Resources
Restuce Name Operating Sysiem Amk CPUlnad g‘;“; U]
err— Resowree_0 Microsifi Windaw NT XB6 1187 2
L Resowrce_| Microsaft Window XP Intel 1959 1
Resuwree 2 Microsafi Windm 98 Pentium 2347 2
Resvuree 3 Salaris Sun Ultra 608 1
Resaarce_{ Lisux Tniel 1886 1
Resowree § Limx Sun Ultra 1758
Resowrce_6 Salaris Sun Ultra 1337

1
Laad Balancing has been dune and job [D 3 has beew migrated from resource 2 io Pendingjoh List

£] Done % Local ntranet

Fig. 7. Image of Load Balancing (2)

Above is the image of Load Balancing (2). This
image shows after Load Balancing has been performed
but job is not migrated. This is one particular case
when heavily loaded resource has been finalize and
job which should be migrated has been finalize but
there is no corresponding lightly loaded resource is
available. In this case job is put in to Pending Job list.

Ranichandra et al: Recitation of Load Balancing Algorithms ...

When ever any lightly loaded resource will be available
this job will be migrated to the lightly loaded resource.

X. CONCLUSION

Grid application performance remains a challenge
in dynamic grid environment. Resources can be
submitted to Grid and can be withdrawn from Grid at
any moment. This characteristic of Grid makes Load
Balancing one of the critical features of Grid
infrastructure. Here we have focused on Load
Balancing and tried to present the impacts of Load
Balancing on grid application performance and finally
proposed a efficient Load Balancing algorithm for Grid
environment.

In this work we analyzed existing Load Balancing
algorithm and proposed an enhanced algorithm which
more efficiently implements three out of five policies
implemented in existing Load Balancing algorithm.
These three policies are: Information Policy, Triggering
Policy and Selection Policy. Proposed algorithm is
executed in simulated Grid environment.

[1]

[2]

[3]

[4]

[5]

[6]

25

REFERENCES

Krishnaram Kenthapadi, Stanford University,
kngk@cs.stanford.edu and Gurmeet Singh Mankuy,
Google Inc., manku@google.com, Decentralized
Algorithms using both Local and Random Probes for
P2P Load Balancing.

lan Foster, Carl Kesselman Steven Tuecke, 2001 “The
Anatomy of the Grid Enabling Scalable Virtual
Organizations”, Intl J. Supercomputer Applications.

Francois Grey, Matti Heikkurinen, Rosy Mondardini,
Robindra Prabhu, “Brief History of Grid",
http://Gridcafe.web.cern.ch/Gridcafe/Gridhistory/history
.html.

Marcin Bienkowski, Miroslaw Korzeniowski, Friedhelm
Meyer aud der Heide, Dynamic Load Balancing in
Distributed Hash Tables.

Giuseppe Di Fatta and Michael R. Berthold,
Department of Computer and Information Science,
University of Konstanz, Decentralized Load Balancing
for Highly Irregular Search Problems.

Anthony Sulistio, Chee Shin Yeo and Rajkumar Buyya,
Visual Modeler for Grid Modeling and Simulation
(GridSim) Toolkit.

